[1] 王朝阳,王振霞.涨跌停、融资融券与股价波动率——基于AH股的比较研究[J]. 经济研究,2017,(4):151-163. [2] 陈海强,范云菲.融资融券交易制度对中国股市波动率的影响——基于面板数据政策评估方法的分析[J]. 金融研究,2015,(6):159-171. [3] 卢骏,杨季超.融资融券交易对市场价格发现的影响——基于中国创业板与中小板的研究[J]. 财经论丛,2015,(11):43-51. [4] 胡忆文.融资融券对我国股市波动性影响的实证研究[J]. 财经论丛,2017,(4):55-60. [5] 曹栋,张佳.基于GARCH-M模型的股指期货对股市波动影响的研究[J]. 中国管理科学,2017,(1):27-32. [6] 杨晓兰,金雪军.我国股票市场熔断机制的磁力效应:基于自然实验的证据[J]. 金融研究,2017,(9):165-181. [7] 汪天都,孙谦.传统监管措施能够限制金融市场的波动吗?[J]. 金融研究,2018,(9):177-191. [8] Gu M., Kang W., Xu B. Limits of Arbitrage and Idiosyncratic Volatility: Evidence from China Stock Market[J]. Journal of Banking & Finance, 2018, 86: 240-258. [9] Brumm J., Grill M., Kubler F., et al. Margin Regulation and Volatility[J]. Journal of Monetary Economics, 2015, 75: 54-68. [10] Deb S. S., Kalev P. S., Marisetty V. B. Price Limits and Volatility[J]. Pacific-Basin Finance Journal, 2017, 45: 142-156. [11] Ngassam C. Effect of Price Limits on Volatility and Stock Returns in Emerging Markets: Evidence from the Johannesburg Stock Exchange[J]. Journal of Comparative International Management, 2002, 5(1):16-20. [12] Al-Rjoub S.A.M., Abutabenjeh S. Price Limits and Stock Returns Volatility in Jordanian Banks[J]. International Journal of Monetary Economics and Finance, 2009, (2): 144-165. [13] 史永东,蒋贤锋.中国证券市场印花税调整的效应分析[J]. 世界经济,2003,(12):63-70. [14] 陈其安,张媛,刘星.宏观经济环境、政府调控政策与股票市场波动性[J]. 经济学家,2010,(2):90-97. [15] Burman L.E., Gale W.G., Gault S.,et al. Financial Transaction Taxes in Theory and Practice[J]. National Tax Journal,2016,69(1):171-216. [16] 杨继平,冯毅俊.利率调整对我国股市不同状态波动性的影响[J]. 管理科学学报,2017,(2):63-73. [17] 贾盾,孙溪,郭瑞.货币政策公告、政策不确定性及股票市场的预公告溢价效应——来自中国市场的证据[J]. 金融研究,2019,(7):76-93. [18] Chen E. T., Clements A. S&P 500 Implied Volatility and Monetary Policy Announcements[J]. Finance Research Letters, 2007, (4):227-232. [19] 王博,李力,郝大鹏.货币政策不确定性、违约风险与宏观经济波动[J]. 经济研究,2019,(3):119-134. [20] Iryna K.,Matt R.S. Volatility in Equity Markets and Monetary Policy Rate Uncertainty[J]. Journal of Empirical Finance,2018,45:68-83. [21] Husted L.,Rogers J.,Sun B. Monetary Policy Uncertainty[J]. Journal of Monetary Economics,2019, (7):32-47. [22] Engle R. F., Ghysels E., Sohn B. Stock Market Volatility and Macroeconomic Fundamentals[J]. Review of Economics & Statistics, 2013, 95(3):776-797. [23] Asgharian H., Hou A.J., Javed F. The Importance of the Macroeconomic Variables in Forecasting Stock Return Variance: A GARCH-MIDAS Approach[J]. Journal of Forecasting, 2013, 32(7): 600-612. [24] Conrad C., Custovic A., Ghysels E. Long- and Short-Term Cryptocurrency Volatility Components: A GARCH-MIDAS Analysis[R]. Journal of Risk and Financial Management, 2018, 11(2): 1-12. [25] Girardin, E.,Joyeux R. Macro Fundamentals as a Source of Stock Market Volatility in China: A GARCH-MIDAS Approach[J]. Economic Modelling, 2013, 34: 59-68. [26] 夏婷,闻岳春.经济不确定性是股市波动的因子吗?——基于GARCH-MIDAS模型的分析[J]. 中国管理科学,2018,(12):1-11. [27] 王明涛,路磊,宋锴.政策因素对股票市场波动的非对称性影响[J]. 管理科学学报,2012,15(12):40-57. [28] Tsay R.S.金融时间序列分析[M]. 王远林,王辉,潘家柱,译.北京:人民邮电出版社,2012. [29] Ghysels E. Macroeconomics and the Reality of Mixed Frequency Data[J]. Journal of Econometrics, 2016, 193(2):294-314. [30] Cochrane J.H. Finance: Function Matters, Not Size[J]. Journal of Economic Perspectives, 2013, 27(2):29-50. [31] 朱相平,彭田田.QFII持股对中国股票市场稳定性的影响——基于中美贸易摩擦背景下的研究[J]. 宏观经济研究,2019,(5):60-73. [32] 郑挺国,尚玉皇.基于宏观基本面的股市波动度量与预测[J]. 世界经济,2014,(12):118-136. [33] Hansen P.R. A Test for Superior Predictive Ability[J]. Journal of Business & Economic Statistics,2005,23(4):365-380. |