[1]Beaver W. Financial Ratios as Predictors of Failure[J]. Journal of Accounting Research, 1966, 4(1): 71-111. [2]熊艳, 李常青, 魏志华. 媒体“轰动效应”: 传导机制、经济后果与声誉惩戒——基于“霸王事件”的案例研究[J]. 管理世界, 2011, (10): 125-140. [3]饶育蕾, 彭叠峰, 成大超. 媒体注意力会引起股票的异常收益吗? ——来自中国股票市场的经验证据[J]. 系统工程理论与实践, 2010, (2): 287-297. [4]Guest N. M. The Information Role of the Media in Earnings News[J]. Journal of Accounting Research, 2021, 59(3): 1021-1076. [5]Burke J., Hoitash R., Hoitash U. Auditor Response to Negative Media Coverage of Client Environmental, Social, and Governance Practices[J]. Accounting Horizons, 2019, 33(3): 1-23 [6]An Z., Chen C., Naiker V., Wang J. Does Media Coverage Deter Firms from Withholding Bad News? Evidence from Stock Price Crash Risk[J]. Journal of Corporate Finance, 2020, 64: 101664. [7]汪昌云, 武佳薇. 媒体语气、投资者情绪与IPO定价[J]. 金融研究, 2015, (9): 174-189. [8]李培功. 媒体报道偏差的经济学分析[J]. 经济学动态, 2013, (4): 145-152. [9]李焰, 王琳. 媒体监督、声誉共同体与投资者保护[J]. 管理世界, 2013, (11): 130-143, 188. [10]Kelly S., Ahmad K. Estimating the Impact of Domain-Specific News Sentiment on Financial Assets[J]. Knowledge-Based Systems, 2018, 150(JUN. 15): 116-126. [11]Du H., Hao J., He F., Xi W. Media Sentiment and Cross-Sectional Stock Returns in the Chinese Stock Market[J]. Research in International Business and Finance, 2022, 60: 101590. [12]应千伟, 呙昊婧, 邓可斌. 媒体关注的市场压力效应及其传导机制[J]. 管理科学学报, 2017, (4): 32-49. [13]李培功, 沈艺峰. 媒体的公司治理作用: 中国的经验证据[J]. 经济研究, 2010, (4): 14-27. [14]王昱, 杨珊珊. 考虑多维效率的上市公司财务困境预警研究[J]. 中国管理科学, 2021, (2): 32-41. [15]Sun J., Fujita H., Zheng Y., Ai W. Multi-Class Financial Distress Prediction Based On Support Vector Machines Integrated with the Decomposition and Fusion Methods[J]. Information Sciences, 2021, 559: 153-170. [16]刘笑霞, 李明辉, 孙蕾. 媒体负面报道、审计定价与审计延迟[J]. 会计研究, 2017, (4): 88-94, 96. [17]姚加权, 冯绪, 王赞钧, 等. 语调、情绪及市场影响: 基于金融情绪词典[J]. 管理科学学报, 2021, (5): 26-46. [18]甘丽凝, 陈思, 胡珉, 等. 管理层语调与权益资本成本——基于创业板上市公司业绩说明会的经验证据[J]. 会计研究, 2019, (6): 27-34. [19]谢德仁, 林乐. 管理层语调能预示公司未来业绩吗? ——基于我国上市公司年度业绩说明会的文本分析[J]. 会计研究, 2015, (2): 20-27, 93. [20]Saina H., Purnamiba S. W. Combine Sampling Support Vector Machine for Imbalanced Data Classification[J]. Procedia Computer Science, 2015, 72(1): 59-66. [21]Brown I., Mues C. An Experimental Comparison of Classification Algorithms for Imbalanced Credit Scoring Data Sets[J]. Expert Systems with Applications, 2012, 39(3): 3446-3453. [22]Chen T., Guestrin C. XGBoost: A Scalable Tree Boosting System[J]. ACM, 2016. DOI:10. 1145/2939672. 2939785. [23]Petropoulos A., Siakoulis V. Can Central Bank Speeches Predict Financial Market Turbulence? Evidence from an Adaptive NLP Sentiment Index Analysis Using XGBoost Machine Learning Technique[J]. Central Bank Review, 2021, 21(4): 141-153. [24]Bao Y., Ke B., Li B., Yu Y., Zhang J. Detecting Accounting Fraud in Publicly Traded U. S. Firms Using a Machine Learning Approach[J]. Journal of Accounting Research, 2020, 58(1): 199-235. [25]孙洁, 李辉, 韩建光. 基于滚动时间窗口支持向量机的财务困境预测动态建模[J]. 管理工程学报, 2010, (4): 174-180, 92. [26]李成刚, 贾鸿业, 赵光辉, 等. 基于信息披露文本的上市公司信用风险预警——来自中文年报管理层讨论与分析的经验证据[J]. 中国管理科学, 2023, (2): 18-29. [27]吴璇, 田高良, 司毅, 等. 网络舆情管理与股票流动性[J]. 管理科学, 2017, (6): 51-64. |