财经论丛 ›› 2019, Vol. 35 ›› Issue (6): 63-72.

• 财务与会计 • 上一篇    下一篇

管理层的“弦外之音”,投资者能听得懂吗?——基于管理层语意的LSTM深度学习研究

杨七中1, 马蓓丽2   

  1. 1.南京财经大学会计学院,江苏 南京 210023;
    2.江苏理工学院商学院,江苏 常州 213001
  • 收稿日期:2018-07-16 出版日期:2019-06-10 发布日期:2019-06-13
  • 作者简介:杨七中(1978-),男,江苏徐州人,南京财经大学会计学院副教授,博士;马蓓丽(1981-),女,江苏常州人,江苏理工学院商学院讲师。
  • 基金资助:

    江苏省社会科学基金一般项目(18EYB010);江苏省高校哲学社会科学研究重点项目(2018SJZDI088)

Can Chinese Investors Absorb the Meanings behind the Executives' Words?——LSTM Deep Learning Analysis Based on Management Meanings

YANG Qizhong1, MA Beili2   

  1. 1. School of Accountancy, Nanjing University of Finance and Economics, Nanjing 210023, China;
    2.Business school, Jiangsu university of technology, Changzhou 213001, China
  • Received:2018-07-16 Online:2019-06-10 Published:2019-06-13

摘要:

我国资本市场上的投资者能够听得懂管理层的“话里话、弦外音”吗?本文选用LSTM深度学习技术,对我国上市公司2010~2014年度业绩说明会上的管理层回复内容进行文本分析,研究管理层所表达的真正语意。结果发现,投资者能理解管理层的真实语意,资本市场对正面语意做出滞后显著的正向反应,而对负面语意做出更及时显著的负向反应;进一步基于Fama and French(1993)三因子模型研究管理层语意是否是投资者股票交易策略的因子,但未发现投资者把管理层语意作为交易策略因子的证据。本文的研究一方面表明业绩说明会这样的非财务信息披露渠道具有存在的价值并且验证了行为经济学领域的前景理论,另一方面LSTM深度学习技术能避免传统“词袋法”的缺陷,值得拓展到其他非财务信息文本分析领域,适当开展进一步应用。

关键词: 管理层语意, 文本分析, LSTM深度学习, 市场反应

Abstract:

Can Chinese capital market absorb the meanings behind the executives' words? Based on the management answering data at earnings communication conferences held by Chinese listed companies from 2010 to 2014, this paper applies the long-short term memory deep learning technique to analyze this issue. It finds that the investors can understand the real meanings transferred by the top management team, reacting positively to positive management meanings and negatively to negative meanings. This paper further investigates if management meaning can act as one of strategy trade factors by Fama-French three factors model. However, no evidence is found concerning this. The result indicates that for one thing, earnings communication conference is an efficient nonfinancial information disclosure channel, and for another, the LSTM technique, which can help avoid the drawback of “the bag of words” approach, deserves further develpment in the future.

Key words: Management Meanings, Textual Analysis, LSTM Deep Learning, Market Reaction

中图分类号: