财经论丛 ›› 2025, Vol. 41 ›› Issue (8): 39-51.

• 产业经济 • 上一篇    下一篇

数字新质生产力、资源错配与产出变动分解:基于上市公司数据的测算分析

高锡鹏, 李香菊   

  1. 西安交通大学经济与金融学院,陕西 西安 710049
  • 收稿日期:2024-10-20 出版日期:2025-08-10 发布日期:2025-08-07
  • 通讯作者: 高锡鹏(1996—),男,山东莱州人,西安交通大学经济与金融学院博士生。
  • 作者简介:李香菊(1962—),女,河南荥阳人,西安交通大学经济与金融学院教授。
  • 基金资助:
    国家社会科学基金重点项目(19AJY024);教育部人文社会科学研究一般项目(24YJC790214)

Digital New Quality Productivity, Resource Misallocation and Decomposition of Output Changes: Measurement and Analysis Based on Data of the Listed Companies

GAO Xipeng, LI Xiangju   

  1. School of Economics and Finance, Xi'an Jiaotong University, Xi'an 710049, China
  • Received:2024-10-20 Online:2025-08-10 Published:2025-08-07

摘要: 本文将数据要素引入传统经济增长核算中,构建了一个包含资本、劳动力和数据三类要素扭曲影响总产出变动的理论分析框架。利用2012—2022年中国上市公司数据,对总产出变动进行了贡献度分解,测算分析了三类要素对总产出的扭曲改变效应,并估计了我国科学技术研究相关行业、数字经济核心行业和部分高端制造业的数字新质生产力水平和资源错配程度。研究发现,第一,2012—2022年间,我国数字新质生产力水平呈现波动上升趋势,且该发展趋势主要依靠科学技术研究相关行业技术研发和部分高端制造业数字化转型驱动。第二,在科学技术研究相关行业、数字经济核心行业和部分高端制造业中,资本、劳动力和数据这三个要素的错配程度差异较大,其中数据要素的配置较为适度。第三,总产出增长的主要动力来自三要素投入数量的增加,次要动力来自数字新质生产力的提升和产出份额效应。第四,各要素价格市场化机制不健全。考虑要素外部性影响后,资本和数据要素对总产出变动的扭曲改变效应基本为正值,但劳动力要素的扭曲改变效应呈现正负变化。本文对于如何提升数据要素配置效率、发展数字新质生产力主要载体产业和推进数据要素市场化改革具有重要政策启示。

关键词: 数字经济, 新质生产力, 资源错配, 产出变动分解, 要素扭曲效应

Abstract: This study extends the traditional economic growth accounting by incorporating data elements, thereby developing a theoretical framework that examines how distortions in three factor inputs (capital, labor, and data) affect total output. Utilizing data from Chinese listed companies from 2012 to 2022, we estimate digital new quality productivity levels and resource misallocation degrees across three key sectors: scientific and technological research-related industries, core digital economy industries, and selected high-end manufacturing industries. Our analysis decomposes the contributions to output changes and measures the distortionary effects of these three factors. The findings reveal four key insights. First, digital new quality productivity among listed companies exhibited a fluctuating upward trend, primarily driven by technological R&D in scientific research-related industries and digital transformation in high-end manufacturing. Second, significant disparities exist in factor misallocation across the three sectors, with data factors demonstrating relatively moderate distortion compared to capital and labor. Third, output growth primarily depended on increased factor inputs, then by digital productivity growth and output share effects. Fourth, the factor price marketization mechanisms are imperfect. With factor externalities, there are positive distortionary effects of capital and data on output changes, whereas the distortionary effect of labor is either positive or negative.

Key words: Digital Economy, New Quality Productivity, Resource Misallocation, Decomposition of Output Changes, Factor Distortion Effects

中图分类号: